Databricks-Generative-AI-Engineer-Associate Lerntipps & Databricks-Generative-AI-Engineer-Associate Deutsche
Wenn Sie in kurzer Zeit mit weniger Mühe sich ganz effizient auf die Databricks Databricks-Generative-AI-Engineer-Associate Zertifizierungsprüfung vorbereiten, benutzen Sie doch schnell die Schulungsunterlagen zur Databricks Databricks-Generative-AI-Engineer-Associate Zertifizierungsprüfung. Sie werden von der Praxis bewährt. Viele Kandidaten haben bewiesen, dass man mit der Hilfe von PrüfungFrage die Prüfung 100% bestehen können. Mit PrüfungFrage können Sie Ihr Ziel erreichen und die beste Effekte erzielen.
Die Produkte von PrüfungFrage sind zuverlässig und von guter Qualität. Sie können im Internet teilweise die Demo zur Databricks Databricks-Generative-AI-Engineer-Associate Zertifizierungsprüfung kostenlos als Probe herunterladen. Nach dem Benutzen, meine ich, werden Sie mit unseren Produkten zufrieden sein. Weshalb zögern Sie noch, wenn es so gute Produkte zum Bestehen der Databricks Databricks-Generative-AI-Engineer-Associate Prüfung gibt. Schicken Sie doch schnell die Produkte von PrüfungFrage in den Warenkorb.
>> Databricks-Generative-AI-Engineer-Associate Lerntipps <<
Databricks-Generative-AI-Engineer-Associate Deutsche - Databricks-Generative-AI-Engineer-Associate Dumps Deutsch
Wir PrüfungFrage bieten alle mögliche Vorbereitungsunterlagen von Databricks Databricks-Generative-AI-Engineer-Associate Zertifizierungsprüfung. Sie können die Databricks Databricks-Generative-AI-Engineer-Associate Prüfungsunterlagen in verschiedenen Webseiten und Büchern finden. Aber unsere Prüfungsfragen und Testantworten sind die besten und die umfassendsten. Unsere Databricks Databricks-Generative-AI-Engineer-Associate Prüfungsfragen und-antworten können Ihnen helfen, nur einmal diese Prüfung zu bestehen. Und Sie können weniger Zeit verwenden.
Databricks Certified Generative AI Engineer Associate Databricks-Generative-AI-Engineer-Associate Prüfungsfragen mit Lösungen (Q39-Q44):
39. Frage
A Generative Al Engineer has built an LLM-based system that will automatically translate user text between two languages. They now want to benchmark multiple LLM's on this task and pick the best one. They have an evaluation set with known high quality translation examples. They want to evaluate each LLM using the evaluation set with a performant metric.
Which metric should they choose for this evaluation?
Antwort: A
Begründung:
The task is to benchmark LLMs for text translation using an evaluation set with known high-quality examples, requiring a performant metric. Let's evaluate the options.
* Option A: ROUGE metric
* ROUGE (Recall-Oriented Understudy for Gisting Evaluation) measures overlap between generated and reference texts, primarily for summarization. It's less suited for translation, where precision and word order matter more.
* Databricks Reference:"ROUGE is commonly used for summarization, not translation evaluation"("Generative AI Cookbook," 2023).
* Option B: BLEU metric
* BLEU (Bilingual Evaluation Understudy) evaluates translation quality by comparing n-gram overlap with reference translations, accounting for precision and brevity. It's widely used, performant, and appropriate for this task.
* Databricks Reference:"BLEU is a standard metric for evaluating machine translation, balancing accuracy and efficiency"("Building LLM Applications with Databricks").
* Option C: NDCG metric
* NDCG (Normalized Discounted Cumulative Gain) assesses ranking quality, not text generation.
It's irrelevant for translation evaluation.
* Databricks Reference:"NDCG is suited for ranking tasks, not generative output scoring" ("Databricks Generative AI Engineer Guide").
* Option D: RECALL metric
* Recall measures retrieved relevant items but doesn't evaluate translation quality (e.g., fluency, correctness). It's incomplete for this use case.
* Databricks Reference: No specific extract, but recall alone lacks the granularity of BLEU for text generation tasks.
Conclusion: Option B (BLEU) is the best metric for translation evaluation, offering a performant and standard approach, as endorsed by Databricks' guidance on generative tasks.
40. Frage
A Generative Al Engineer is tasked with improving the RAG quality by addressing its inflammatory outputs.
Which action would be most effective in mitigating the problem of offensive text outputs?
Antwort: C
Begründung:
Addressing offensive or inflammatory outputs in a Retrieval-Augmented Generation (RAG) system is critical for improving user experience and ensuring ethical AI deployment. Here's whyDis the most effective approach:
* Manual data curation: The root cause of offensive outputs often comes from the underlying data used to train the model or populate the retrieval system. By manually curating the upstream data and conducting thorough reviews before the data is fed into the RAG system, the engineer can filter out harmful, offensive, or inappropriate content.
* Improving data quality: Curating data ensures the system retrieves and generates responses from a high-quality, well-vetted dataset. This directly impacts the relevance and appropriateness of the outputs from the RAG system, preventing inflammatory content from being included in responses.
* Effectiveness: This strategy directly tackles the problem at its source (the data) rather than just mitigating the consequences (such as informing users or restricting access). It ensures that the system consistently provides non-offensive, relevant information.
Other options, such as increasing the frequency of data updates or informing users about behavior expectations, may not directly mitigate the generation of inflammatory outputs.
41. Frage
A Generative Al Engineer would like an LLM to generate formatted JSON from emails. This will require parsing and extracting the following information: order ID, date, and sender email. Here's a sample email:
They will need to write a prompt that will extract the relevant information in JSON format with the highest level of output accuracy.
Which prompt will do that?
Antwort: B
Begründung:
Problem Context: The goal is to parse emails to extract certain pieces of information and output this in a structured JSON format. Clarity and specificity in the prompt design will ensure higher accuracy in the LLM' s responses.
Explanation of Options:
* Option A: Provides a general guideline but lacks an example, which helps an LLM understand the exact format expected.
* Option B: Includes a clear instruction and a specific example of the output format. Providing an example is crucial as it helps set the pattern and format in which the information should be structured, leading to more accurate results.
* Option C: Does not specify that the output should be in JSON format, thus not meeting the requirement.
* Option D: While it correctly asks for JSON format, it lacks an example that would guide the LLM on how to structure the JSON correctly.
Therefore,Option Bis optimal as it not only specifies the required format but also illustrates it with an example, enhancing the likelihood of accurate extraction and formatting by the LLM.
42. Frage
A Generative AI Engineer is creating an agent-based LLM system for their favorite monster truck team. The system can answer text based questions about the monster truck team, lookup event dates via an API call, or query tables on the team's latest standings.
How could the Generative AI Engineer best design these capabilities into their system?
Antwort: C
Begründung:
In this scenario, the Generative AI Engineer needs to design a system that can handle different types of queries about the monster truck team. The queries may involve text-based information, API lookups for event dates, or table queries for standings. The best solution is to implement atool-based agent system.
Here's how option B works, and why it's the most appropriate answer:
* System Design Using Agent-Based Model:In modern agent-based LLM systems, you can design a system where the LLM (Large Language Model) acts as a central orchestrator. The model can "decide" which tools to use based on the query. These tools can include API calls, table lookups, or natural language searches. The system should contain asystem promptthat informs the LLM about the available tools.
* System Prompt Listing Tools:By creating a well-craftedsystem prompt, the LLM knows which tools are at its disposal. For instance, one tool may query an external API for event dates, another might look up standings in a database, and a third may involve searching a vector database for general text-based information. Theagentwill be responsible for calling the appropriate tool depending on the query.
* Agent Orchestration of Calls:The agent system is designed to execute a series of steps based on the incoming query. If a user asks for the next event date, the system will recognize this as a task that requires an API call. If the user asks about standings, the agent might query the appropriate table in the database. For text-based questions, it may call a search function over ingested data. The agent orchestrates this entire process, ensuring the LLM makes calls to the right resources dynamically.
* Generative AI Tools and Context:This is a standard architecture for integrating multiple functionalities into a system where each query requires different actions. The core design in option B is efficient because it keeps the system modular and dynamic by leveraging tools rather than overloading the LLM with static information in a system prompt (like option D).
* Why Other Options Are Less Suitable:
* A (RAG Architecture): While relevant, simply ingesting PDFs into a vector store only helps with text-based retrieval. It wouldn't help with API lookups or table queries.
* C (Conditional Logic with RAG/API/TABLE): Although this approach works, it relies heavily on manual text parsing and might introduce complexity when scaling the system.
* D (System Prompt with Event Dates and Standings): Hardcoding dates and table information into a system prompt isn't scalable. As the standings or events change, the system would need constant updating, making it inefficient.
By bundling multiple tools into a single agent-based system (as in option B), the Generative AI Engineer can best handle the diverse requirements of this system.
43. Frage
Which TWO chain components are required for building a basic LLM-enabled chat application that includes conversational capabilities, knowledge retrieval, and contextual memory?
Antwort: B,F
Begründung:
Building a basic LLM-enabled chat application with conversational capabilities, knowledge retrieval, and contextual memory requires specific components that work together to process queries, maintain context, and retrieve relevant information. Databricks' Generative AI Engineer documentation outlines key components for such systems, particularly in the context of frameworks like LangChain or Databricks' MosaicML integrations. Let's evaluate the required components:
* Understanding the Requirements:
* Conversational capabilities: The app must generate natural, coherent responses.
* Knowledge retrieval: It must access external or domain-specific knowledge.
* Contextual memory: It must remember prior interactions in the conversation.
* Databricks Reference:"A typical LLM chat application includes a memory component to track conversation history and a retrieval mechanism to incorporate external knowledge"("Databricks Generative AI Cookbook," 2023).
* Evaluating the Options:
* A. (Q): This appears incomplete or unclear (possibly a typo). Without further context, it's not a valid component.
* B. Vector Stores: These store embeddings of documents or knowledge bases, enabling semantic search and retrieval of relevant information for the LLM. This is critical for knowledge retrieval in a chat application.
* Databricks Reference:"Vector stores, such as those integrated with Databricks' Lakehouse, enable efficient retrieval of contextual data for LLMs"("Building LLM Applications with Databricks").
* C. Conversation Buffer Memory: This component stores the conversation history, allowing the LLM to maintain context across multiple turns. It's essential for contextual memory.
* Databricks Reference:"Conversation Buffer Memory tracks prior user inputs and LLM outputs, ensuring context-aware responses"("Generative AI Engineer Guide").
* D. External tools: These (e.g., APIs or calculators) enhance functionality but aren't required for a basicchat app with the specified capabilities.
* E. Chat loaders: These might refer to data loaders for chat logs, but they're not a core chain component for conversational functionality or memory.
* F. React Components: These relate to front-end UI development, not the LLM chain's backend functionality.
* Selecting the Two Required Components:
* Forknowledge retrieval, Vector Stores (B) are necessary to fetch relevant external data, a cornerstone of Databricks' RAG-based chat systems.
* Forcontextual memory, Conversation Buffer Memory (C) is required to maintain conversation history, ensuring coherent and context-aware responses.
* While an LLM itself is implied as the core generator, the question asks for chain components beyond the model, making B and C the minimal yet sufficient pair for a basic application.
Conclusion: The two required chain components areB. Vector StoresandC. Conversation Buffer Memory, as they directly address knowledge retrieval and contextual memory, respectively, aligning with Databricks' documented best practices for LLM-enabled chat applications.
44. Frage
......
Um die Databricks Databricks-Generative-AI-Engineer-Associate Zertifizierungsprüfung zu bestehen, ist es notwendig, geeignete Prüfungsmaterialien zu wählen. Unser PrüfungFrage bietet Ihnen die effiziente Materialien zur Databricks Databricks-Generative-AI-Engineer-Associate Zertifizierungsprüfung. Die IT-Experten von PrüfungFrage sind alle erfahrungsreich. Die von ihnen erforschten Materialien sind den realen Prüfungsthemen fast gleich. PrüfungFrage ist eine Website, die den Kandidaten Bequemlichkeiten zur Zertifizierungsprüfung bietet und Ihnen helfen, die Databricks Databricks-Generative-AI-Engineer-Associate Prüfung zu bestehen.
Databricks-Generative-AI-Engineer-Associate Deutsche: https://www.pruefungfrage.de/Databricks-Generative-AI-Engineer-Associate-dumps-deutsch.html
Mit PrüfungFrage Databricks-Generative-AI-Engineer-Associate Deutsche werden Sie sicher eine glänzende Zukunft haben, Unsere Databricks-Generative-AI-Engineer-Associate pdf torrent werden von unseren zertifizierten IT-Experten nach den höchsten Standards der technischen Genauigkeit geschrieben und getestet, Databricks Databricks-Generative-AI-Engineer-Associate Lerntipps Unsere große Menge der Unterlagen und Prüfungsaufgaben werden Ihnen Überraschung bringen, Databricks Databricks-Generative-AI-Engineer-Associate Lerntipps Und diese kostenlose Aktualisierung dauert ein jahr lang.
Unter dem schweren Gewicht ihrer Felle erschauerte Catelyn, Databricks-Generative-AI-Engineer-Associate Deutsche Sonst hatte sie ja doch nichts zu tun, Mit PrüfungFrage werden Sie sicher eine glänzende Zukunft haben.
Unsere Databricks-Generative-AI-Engineer-Associate PDF torrent werden von unseren zertifizierten IT-Experten nach den höchsten Standards der technischen Genauigkeit geschrieben und getestet, Unsere Databricks-Generative-AI-Engineer-Associate große Menge der Unterlagen und Prüfungsaufgaben werden Ihnen Überraschung bringen!
Die seit kurzem aktuellsten Databricks Certified Generative AI Engineer Associate Prüfungsunterlagen, 100% Garantie für Ihen Erfolg in der Databricks Databricks-Generative-AI-Engineer-Associate Prüfungen!
Und diese kostenlose Aktualisierung dauert ein jahr lang, Immer mehr Leute nehmen an der Databricks Databricks-Generative-AI-Engineer-Associate Prüfung teil.